
Code Optimization using Code Purifier
Neeta Malviya#1, Dr. Ajay Khunteta*2

#M.Tech (Software Engineering)
Department of Computer Science & Engineering, Rajasthan Technical University

Poornima College of Engineering, Jaipur, India

*Professor (Department of Computer Science & Engineering)
Poornima College of Engineering, Jaipur, India

Abstract- In this paper we have implemented the concept of
Inlining, Folding, Dead Code Removal and Common Sub
expression removal for optimizing the code.

The improvement in the quality of code remains a big
issue from the earlier days. Sometimes it is difficult for a
programmer to find out which part of code consumes more
resources and hence lead to an inefficient code. Previously
most of the optimization were done manually or can be said as
statically which leads to number of problems to the
programmer and also had some of the limitations. However,
these days several compilers are available which makes the
optimization to be performed dynamically. In this dissertation
work, an attempt has been made to design and implement a
system that can automatically optimize the code in order to
minimize the complexity of the code such that the code
becomes more efficient. To accomplish this, a system has been
developed to implement the two machine independent
techniques- dead code elimination and common sub-
expression elimination, which dynamically optimizes the code.
The thesis basically moves around these two techniques, how
these techniques have been implemented, and how does it
works along with the calculation of the code complexity. For
this, the codes were taken randomly. Hence the optimization
of code could be possible using different optimization
techniques. Instead of focusing on developing a new algorithm
or to improve the existing one, this dissertation attempts to
understand the existing compiler techniques clearly and to
analyze the result after implementing the techniques and also
to compare the complexities based on different metrics of the
code.

I. INTRODUCTION
In compiler design, there is one of the technique in which a
part of code is being transformed to produce more efficient
as well as to improve the performance such that the output
remains same, termed as “Optimization”. Code
optimization aims to make high quality code with best
complexity (time and space) such that it should not affect
the exact result of the code. It is mainly based on the
criterion to preserve the semantic equivalence of the
program, such that the algorithm must not be modified. On
an average, the transformation should speed up the
execution of the program. Optimization includes finding a
bottleneck, a critical part of the code which is the primary
consumer of the needed resources. Basically Code
optimization concerns on correctness, it means the
correctness of the generated code should not be changed.
The main aim of the code optimization is to make high
quality code with improved complexity (time and space)
without affecting the exact result of the code.

On using different optimization techniques, the
code can be optimized without affecting the original
(actual) algorithm and final output with the intent of high
performance. When performance is to be considered, then
there is need to choose an algorithm which runs quickly and
the available computing resources are being used
efficiently. So, it can be said that the objective of
optimization is to write a code in such a way that can
reduce both the memory as well as speed. Basically, Code
optimization involves the employment of rules and
algorithms to the program segment with the aim such that
the code becomes faster, smaller, more efficient and so on.

In theoretical perspective, the compiler
optimization basically refers to the program optimization to
achieve performance in the execution. Source code
optimization refers to the three aspects, a programming
language code (front code), an assembly language code
which is generated by the compiler to the appropriate
programming language (intermediate code), the object code
which is generated from the assembly language code for the
execution of the actual work. This work involves the
implementation of two different techniques, dead code
elimination and common sub expression elimination with
the use of different tools in order to optimize the code.

II. IMPORTANCE AND RELEVANCE OF THE STUDY

Optimization is that the field wherever most of the analysis
is completed looking the various papers and article a
number of the relevant data are gathered that makes the
optimization method doable.

Chirag[1] describes concerning the hole optimization
technique using completely different pattern matching
approaches that forms AN regular expression and
conjointly has explores the previous and current analysis
problems in term of “optimizing” compilers using
optimization rules that area unit imagined to be matched
through that the redundant instruction of intermediate code
are often investigated and replaced. For this completely
different pattern matching approaches are mentioned like
string based mostly, tree manipulation, object based mostly
etc. The paper is being divide into four sections wherever
specific rules and pattern rules are laborious coded that
explains concerning the machine dependent hole
optimizers, the inspiration of retarget ready hole
optimisation the combination of code generation and
optimisation into one part and concerning completely
different pattern matching methods severally.

Neeta Malviya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4753-4757

www.ijcsit.com 4753

Brandolese[2] introduced a comprehensive
methodology for software package execution time
estimation, that is supported by rigorous mathematical
models of C statements in terms of elementary operations.
During this the complete analysis flow has been performed
inside an epitome toolset that are presently being employed
for supportive and adapting model parameters.

Johnson[3] in his article describes concerning the
optimization that is procedure of changing a bit of code
such the code becomes additional economical and therefore
the output remains same. It’s being conjointly declared that
a lot of the issues were NP complete and therefore most of
the optimization formula depends on approximation and
heuristics. Conjointly he declared that when the code has
been written, let the compiler do the optimization using
compiler processes.

In this paper the outline is given concerning the
optimization that focuses thereon the collection method
ought to be like because the correctness of the generated
code mustn't be modified, conjointly strategy is defined like
“when” and “where” to optimize for playing optimization.
a number of the techniques applied to intermediate code,
others area unit applied to final code generation and even a
number of the techniques may occur once the final code
generation within which the try is created to remodel the
assemble code itself to additional economical one. It
conjointly describes concerning the “local optimization”
that is outlined because the optimization that area unit
solely enforced inside a basic block, therefore these sort of
optimization area unit easy to implement as a result of any
reasonably management data isn't required solely the
optimization is to be performed inside a block. A number
of the native optimization like constant folding, constant
propagation also are explained. Optimizations that may
eliminate useless instructions using algebraically identities
area unit like operator strength reduction, copy
propagation, dead code elimination except for native
optimizations, the same reasonably optimization that might
be applied across the essential blocks makes them world
optimization. Conjointly concerning machine optimization
is explained, one among the machine optimization that is of
specific importance is register allocation, another most
significant optimization is instruction programming.

Michael E Lee[4] narrate techniques which were used
to optimize the code of C. The concentration is on reducing
time spent by the CPU and provides sample source code
transformation which often yield improvement. The
transformation or optimization is performed such that the
developers of the application programs have the
responsibility to design programs in order to make use of
limited and expensive resources.

The article also describes some of techniques which
were developed for C and C++ code which were developed
for real systems. Detail is also given as how to work with
the big switch statements in order to reduce the number of
comparisons, some of the techniques are described which
can be used to minimize local variable declaring and
reducing number of parameters. Also use of “ int over char
and short ” is preferred. The document also presents some
of the techniques that may enhance performance.

Huang Zhijun[5] in his paper discuss about different
code optimization such that the system resources can be
fully optimize in order to maximize the efficiency of code.
Using different techniques of optimization such as data
flow optimization, loop invariant code, the operation of
data etc., a new product on TI-DSP is being developed.
Code optimization can greatly improve the calculation
speed, to some of the specific software implementation
processes, other methods of optimization can be integrated
such that maximum optimization can be achieved.

Keith[6] developed a modified algorithm for Operator
strength reduction termed as OSR. OSR actually is an
improvement over a prior/previous algorithm given by
Allen, Cocke, and Kennedy. OSR depends on prior
optimization and properties of SSA graph such that the
algorithm developed should be easy to understand and
implement, it should avoid instantiation of sets of induction
variable and region constants which are required by other
algorithm. The algorithm depends on dominance data
which are calculated during the construction of SSA, the
resultant algorithm is easy to recognize, teach, and
implement. Also, discussion about previous work which are
been done in the field of strength reduction.

Koushik Ghosh[7] in his article have collected all the
experience and information that can be used to speed up the
execution as well as memory to make a C code optimized.
In this article the author had also presented the number of
guidelines using which the optimization in C can be made
possible. It also discusses that which part of the code need
to be optimized. Going through the article, different
techniques of optimization are well understood such as
about inlining, integers, boolean expression etc.

Tom Erkinen[8] presents Model based design
capabilities and tools which support verification of
optimized fixed point ECU software. It also tells that while
implementing production software it is important to
consider about the code optimization and code verification
strategies for embedded software. It also covers the
developed technologies that further enable organizations to
adopt MBD for embedded system deployment and
verification.

Paul Hsieh[9] have presented an elusive subject of
program performance optimization. This article outline the
general task of Code optimization, Code architecture which
is about the simple mathematical analysis, understanding of
technological performance, optimization, also many of the
examples is been given by the author.

Keith D. Cooper [10] presented a part of survey in
which transformation of code is intended to enhance the
running time of programs on the uniprocessor machines.
Instead of analysis methods, the aim of transformations is
to enhance the quality of code. Analytical techniques and
specific data flow problems are described which are
necessary to understand transformations. Author had
individually discussed many code transformations. Each of
the transformations was discussed in depth which makes
broad understanding.

Reg. Charney[11] describes about how the code
complexity can be determined with complexity metric and
presented his own metric known as Pymetric. The author

Neeta Malviya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4753-4757

www.ijcsit.com 4754

also described about maintenance metrics which are also
known as static metric and has also subdivided
maintenance metrics into formatting and logical, where
formatting metric concerns with indentation conventions,
naming conventions, comment forms, whitespace usage,
and so on whereas logical metric concerns with number of
paths through a program, conditional statements and
blocks, level of parenthesization, number of terms and
factors in an expression etc. Also, the column of author
outlines factors which can be described while calculating
the complexity such as MCB.

Bruce Childers[12] describes a new method which is
based on a constant compilation system, by which the
application of code is constantly improved when the
aggressive and adaptive code optimization is applied at all
times from static to dynamic optimization. Author has
described a general approach and procedure for continuous
compilation of application code, also in this paper it is
shown that for loop optimization prediction framework has
high accuracy.

Doeppner[13] in his article described about the
different optimization technique such as code motion, loop
unrolling, inlining etc. Also the author has discussed about
writing cache friendly code that is, code which can be
organized and designed such that it utilizes the machine’s
cache in the most efficient way possible. Also, about
writing pipeline friendly cache is described.

Mohammed FadleAbdulla[14] documented the
experiences which they have collected, that can be used to
enhance the style of writing programs in C language even
an implementation of Intel VTune profiler is presented
using manual optimization. The document also shows how
different small changes made to program can affect the
performance of program. It is being also stated if the
developers were using good compilers and have some
knowledge about the optimization techniques, then they can
much easily develop applications with high
performance[15].

III. PROPOSED SOLUTION

We have suggested a solution which works in the four main
concepts.

A. Dead Code Elimination
Dead code elimination is one of the technique used for

the transformation of code. The idea behind this technique
is that if the variable holds a value at a point which is not
used later anywhere in the program, then the variable is
said to be dead at that place. The assignment made to a
dead variable is a dead assignment which can be safely
removed from the program. Dead code is a code which is
never executed or that does nothing useful or if an
instruction result is never used, then that is considered as
“dead” and can be removed from instruction stream.

In this dissertation work, the technique is implemented
which search for the function which is never used and then
eliminate the unused function. The dead code
elimination/technique works in following steps:

1) First of all the code which is to be optimized is
loaded and when a remove dead code button is

clicked, the code is extracted from the rich text
line by line and places into the array.

2) After the code is being placed to the array, the
code or program is then passed to the Cppcheck
tool which will compile and return the result by
identifying the function names which are not used
in the program code and hence are treated as dead
code.

3) Once the unused function is identified then the
search is made to the original program and the
unused functions which were treated as dead code
in previous code are removed from the original i.e.
from the unoptimized code.

4) Finally the new optimized code is saved with the
name dump.cpp in debug folder.

B. Common Subexpression Elimination
Common sub expression elimination is a type of

machine independent optimization. The idea behind this
compiler optimization technique is to find redundant
expression evaluation and replacing them with a single
computation. Basically the idea behind this is that two
operations are common if they produce same result. Many
of the times it happens that in a same program the same
expression is evaluated at different places and the values of
operands does not change i.e. the value of the operand
remains same in the expression, hence in this case the
redundant expression can be easily replaced with one
variable. For example, the program may evaluates a*b in
the starting and end of the code, if the values of a and b
does not change in between these two expression, then in
this condition instead of computing these expression again
and again it is better to save the value of a*b in temporary
variable and then use it in the end. Using this technique the
redundant computations in the program is eliminated, also
the time overhead which is required to compute the
expression more than once is reduced.

The criteria used in our work comprises of the
following steps:

1) First the source code is loaded which aims to be
optimized.

2) When the common sub expression removal button
is clicked, only those lines are extracted which
contains equal to (=) sign and also ends with a
semicolon (;)

3) Then the common expression is searched from
those statements.

4) When the common expression has been found, its
value is assigned to a variable ‘SUB1’.

5) This variable then substitutes all other instances of
the common expression.

6) The new modified code is then saved to the
desired folder using the save result button.

C. Inlining
Inlining is that the method by that the contents of a

function are “inlined”, basically, derived and affixed rather
than a traditional decision thereto function. This manner of
optimisation avoids the overhead of function calls, by
eliminating the requirement to leap, produce a brand new

Neeta Malviya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4753-4757

www.ijcsit.com 4755

stack frame, and reverse this method at the top of the
function.
Advantages: -
1) It doesn't need function line of work overhead.
2) It conjointly save overhead of variables push/pop on the
stack, whereas function line of work.
3) It conjointly save overhead of come back decision from
a function.
4) It will increase locality of reference by utilizing
instruction cache.
5) When in-lining compiler also can apply intra procedural
improvement if nominal. this can be the foremost vital one,
during this method compiler will currently specialize in
dead code elimination, will provide additional stress on
branch prediction, induction variable elimination etc..

D. Constant Propagation and Folding
Constant folding refers to the analysis at compile-time

of expressions whose operands are identified to be
constant. It involves determinant that every one of the
operands in AN expression are constant-valued, acting the
analysis of the expression at compile-time, so exchange the
expression by its worth. If AN expression like ten + a pair
of * three is encountered, the compiler will compute the
result at compile-time (16) and emit code as if the input
contained the result instead of the initial expression.
 If a variable is appointed a continuing worth, then
ensuant uses of that variable is replaced by the constant as
long as no intervening assignment has modified the worth
of the variable. it's known as constant propagation.

IV. IMPLEMENTATION
The system interface is this work has been developed in
visual studio 2010 using visual basic programming
language. It has been designed such that the user feel ease
to understand the basic layout of the work. Its architecture
is such that it could easily be navigated among the various
options, and performs the analysis work as desired.

There are various menus provided for the user as per
the requirements that are placed on the top of the window,
and they are:

1. Inlining
2. Dead Code
3. Common Sub Expression
4. Folding
5. Analysis

Fig. System Layout

REFERENCES

[1] Mr. Chirag H. Bhatt, Dr. Harshad B. Bhadka , “Peephole
Optimization Technique for analysis and review of Compile
Design and Construction”, IOSR Journal of Computer
Engineering (IOSR-JCE), Volume 9, Issue 4 (Mar. - Apr.
2013).

[2] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto, “Source–
Level Execution Time Estimation of C Programs”, Proceedings
of the ninth international symposium on Hardware/software
codesign.

[3] Maggie Johnson, “Code Optimization”, Handout 20 “August
08,2004.

[4] Michael E. Lee, “Optimization of Computer Programs in C ”,
Ontek Corporation, USA.

[5] Huang Zhijun, Liu Weiming,HeZengzhen, “Research on code
optimization when develop highway network monitoring
software based on Trimedia” available at
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=684348
5&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_
all.jsp%3Farnumber%3D6843485

[6] Keith D. Cooper, L. Taylor Simpson, Christopher A. Vick”
“Operator Strength reduction” available at
:http://www.cs.rice.edu/~keith/EMBED/OSR.pdf.

[7] Koushik Ghosh, “Writing Efficient C and C Code
Optimization” available at:
http://www.codeproject.com/Articles/6154/Writing-Efficient-
C-and-C-Code-Optimization.

[8] Tom Erkinen,“Fixed point ECU code optimization and
verification with model based design” available at
http://in.mathworks.com/tagteam/59064_2009-01-
0269.New.pdf.

[9] Paul Heish, “Programming Optimization: Techniques,
examples and discussion” available at:
http://www.azillionmonkeys.com/qed/optimize.html

[10] Keith D. Cooper, Kathryn S. Mckinley, and Linda
Torczon,“Compiler-Based Code-Improvement Techniques”

Neeta Malviya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4753-4757

www.ijcsit.com 4756

available at http://www.cs.tufts.edu/~nr/cs257/archive/keith-
cooper/survey.pdf

[11] Reg. Charney, “Programming Tools: Code Complexity
Metrics” available at
http://www.linuxjournal.com/article/8035

[12] Bruce Childers, Jack W. Davidson, Mary Lou Soffa,
“Continuous Compilation: A New Approach to Aggressive and
Adaptive Code Transformation” available at
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=121337
5&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_
all.jsp%3Farnumber%3D1213375\

[13] Doeppner, “Optimization Techniques in C”, Fall, 2013.
http://cs.brown.edu/courses/cs033/docs/guides/c_optimization_
notes.pdf

[14] Mohammed Fadle Abdulla, “Manual and Fast C Code
Optimization”, Anale. SeriaInformatica. Vol.VIII fasc. I-2010.

[15] Code Optimization” article available at:
http://www.viva64.com/en/t/0084/

Neeta Malviya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4753-4757

www.ijcsit.com 4757

